

Motivation for Caching and
Optimization of Cache

Utilization

Agenda

2 2

•  Memory Technologies
•  Bandwidth Limitations
•  Cache Organization
•  Prefetching/Replacement
•  More Complexity by Coherence
•  Performance Optimization
•  Examples

•  Partially used structure
•  Alignment problem
•  Inefficient loop nesting
•  False sharing

•  Questions

Memory Technologies

3

SRAM vs. DRAM

SRAM Cell DRAM Cell

~140 F² ~ 6 – 10 F²

Access Time: < 0.1 ns Access Time: < 7 ns

4

SRAM vs. DRAM

SRAM

DRAM

Square footage
comparison for same
size of memory

DRAM

SRAM

5

SRAM Technology for Main Memory?

30 cm average
distance ~ 1 ns
delay

6

30 cm
~1 ns

Use of SRAMs

CPU SRAM

DRAM

BUS

Bandwidth Limitations

8

Von-Neumann-Bottleneck

CPU Memory I/O

Control Bus

Address Bus

Data Bus

9

Bandwidth Front Side Bus (FSB)

CPU	

Front	Side	Bus	

North-	
bridge	

South-	
bridge	

Main	
Memory	PCIe	

PCI	 Graphics	
Controller	

BIOS	 I/O	
Controller	

Example:	
Bus	Width:	64	bit	(8	byte)	
FSB	Clock:	400	MHz	
4	transfers/cycle	
Bandwidth:	8	byte	x	400	MHz	x	4	transfers/cycle	
	
=	12800	MB/s	
	
12800	MB/s	/	8	cores	=	1600	MB/s	
		

10

Caching

CPU SRAM (Cache)

DRAM

BUS

AT Control Flags Data (64 Byte)

Cache-Line

Cache Organization

12

Direct Mapped Cache (DM)

1	

3	

Cache	256	byte	
(4	Cache-Lines	64	byte)	

Main	Memory	512	byte	

0

1

2

3

4

5

6

7

0	-	63	

64	-	127	

128	-	191	

192	-	255	

256	-	319	

320	-	383	

384	-	447	

448	-	511	

13

4	

6	

0	Slot 00

Slot 01

Slot 10

Slot 11

0
Tag Slot Offset

5 6 7 8

000000000

001000000

010000000

011000000

100000000

101000000

110000000

111000000

Analogy Direct Mapped Cache (DM)

Fully Associative Cache (FA)

2	

5	

6	

Cache	192	byte	
(3	Cache-Lines	64	byte)	

Main	Memory	512	byte	

0

1

2

3

4

5

6

7

0	-	63	

64	-	127	

128	-	191	

192	-	255	

256	-	319	

320	-	383	

384	-	447	

448	-	511	

15

Analogy Fully Associative Cache (FA)

Set Associative Cache (SA)

2	

Main	Memory	512	byte	

0

0

1

1

2

2

3

3

Set	1	

Set	0	

even	

odd	

Cache	384	byte	
(6	Cache-Lines	64	byte)	

0	

1	

2	

odd	

even	

17

odd	

odd	

odd	

even	

even	

even	

Analogy Set Associative Cache (SA)

Cache implementation

L2 $
256kB

Generic Cache:

Addr [63..0]
MSB LSB

AT S Data = 64B

=

D$
64kB

L3 € 24MB

Cacheline, here 64B:

...

= = = = = = =

mux
Hit

Sel way ”6”

Data = 64B

index

SRAM:

19

Access Time vs. Size

L1$

L2$

L3$

Main Memory

HDD/SSD

Network/Fileserver

A
cc

es
s

Ti
m

e

20

Cache Level Latency

L1$ L2$ L3$
Main Memory

21

32kB 256kB 6MB 8 GB 4 cycles
11 cycles 39 cycles

107 cycles

How is the silicon used (i7-Ex)?

22

How is the silicon used (i7-Ex)?

23

Prefetching/Replacement

24

HW Prefetching

The prefetcher anticipates application’s next memory access and
prefetches the data to the cache

Sequential prefetching: Sequential streams [to a page]. Some number of

prefetch streams supported. Often only for L2 and L3.

PC-based prefetching: Detects strides from the same PC. Often also for
L1.

Adjacent prefetching: On a miss, also bring in the “next” cache line.
Often only for L2 and L3.

25

SW Prefetching

/* Unoptimized */
for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)
 x[j][i] = 2 * x[j][i];

/* Optimized */
for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)
 PREFETCH x[j+1][i]
 x[j][i] = 2 * x[j][i];

(Typically, the HW prefetcher will successfully
prefetch sequential streams)

26

Replacement Policies

• LRU (Least Recently Used):
Evicts the cache line that was least recently used

• Random replacement:
A random cache line is selected for eviction

• FIFO (First In First Out):
The oldest entry will be removed

• LFU (Least Frequently Used):
The least requested cache line will be evicted

27

Analogy Office

Replace

28

Access Time > 2 min
Archive

More Complexity by
Coherence

30

Programming Model:

Shared Memory

Thread Thread Thread Thread Thread Thread Thread Thread

31

Adding Caches: More Concurrency

Shared Memory

Thread
 pc

$

Thread
 pc

$

Thread
 pc

$

Thread
 pc

$

Thread
 pc

$

Thread
 pc

$

Thread
pc

$

Thread
 pcà

$

32

Caches:
Automatic Replication of Data

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…

B:

Read B
…
Read A

33

The Cache Coherent Memory System

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…

A:

...
Read A
…
Write A

B:

Read B
…
Read A

INV INV

34

The Cache Coherent 2

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A

B:

Read B
…
Read A

35

Writeback

Shared Memory

Thread

$

Thread

$

Thread

$

Read A
Read A
…
…
Read A

A:

...
Read A
…
Write A ...
A gets
replaced

B:

Read B
…
Read A

36

Cache Line States in the MESI
Protocol

M – Modified:
The data in the cache line is modified and is guaranteed to only reside
in this cache. The copy in main memory is not up to date, so when the
cache line leaves the modified state the data must be written back to
main memory.

E – Exclusive:
The data in the cache line is unmodified, but is guaranteed to only
reside in this cache.

S – Shared:
The data in the cache line is unmodified, and there may also be
copies of it in other caches.

I – Invalid:
The cache line does not contain valid data.

37

Performance Optimization

38

Optimizing for Cache Performance

Keep the active footprint small

Try to let the processor fetch as much data as possible from cache

and not from main memory (assist the prefetcher, don’t confuse
it!)

Try to ensure that every fetched cache line will consist of 100% data
which actually will be used

Let the thread do the job which has the required data already stored
in its private cache

...

39

What is the potential gain of
 optimizing cache usage?

Latency difference L1$ and mem: ~25-50x

Bandwidth difference L1$ and mem: ~20x

Repeated TLB misses adds a factor ~2-3x

Execute from L1$ instead from mem
 ==> 50-150x improvement

At least a factor 2-4x is within reach

40

Cache Lingo

Miss ratio: What is the likelihood that a memory access will miss in a cache?
Fetch ratio: What is the likelihood that a memory access will cause a fetch

from main memory [including HW prefetching]

Fetch utilization*): What fraction of a cacheline was used before it got evicted
Writeback utilization*): What fraction of a cacheline written back to memory

contains dirty data
Communication utilization*): What fraction of a communicated cacheline is

ever used?

*) This is “ParaTools ThreadSpotter-ish” language

41

Examples

42

Partially Used Structure

struct DATA
{
 int a;
 int b;
 int c;
 int d;
};

DATA * pMyData;
pMyData = new DATA[10*1024*1024];

for (long i=0; i<10*1024*1024; i++)
{
 pMyData[i].a = pMyData[i].b;
}

43

Partially Used Structure
Explanation

44

Partially
Used
Structure

Fully
Used
Structure

Partially Used Structure - Fixed

struct DATA
{
 int a;
 int b;
};

DATA * pMyData;
pMyData = new DATA[10*1024*1024];

for (long i=0; i<10*1024*1024; i++)
{
 pMyData[i].a = pMyData[i].b;
}

45

Example: A scalable parallel application?

0

1

2

3

4

1 2 3 4
Cores

App:	Cigar	–	geneUc	algorithm	

Looks like a perfect scalable application!
Are we done?

Performance

46

Cigar: The worst slow spot

for (current = 0;

 current < howmany-1;

 current++)

{

 max = current;

 /* Find Next best */

 for (i = current+1;

 i < size; i++)

 if((p+rank[i])->fitness>

 (p+rank[max])->fitness)

 max = i;

 SwapInt(&rank[current],

 &rank[max]);

}

fitness fitness fitness fitness fitness fitness fitness fitness

INDIVIDUAL p[]

47

Cigar: Code change. Duplicate
data

for (current = 0;

 current < howmany-1;

 current++)

{

 max = current;

 /* Find Next best */

 for (i = current+1;

 i < size; i++)

 if (f_copy[rank[i]] >

 f_copy[rank[max]])

 max = i;

 SwapInt(&rank[current],

 &rank[max]);

}

new_fitness new_fitness new_fitness new_fitness new_fitness new_fitness new_fitness copy of fitness

fitness fitness fitness fitness fitness fitness fitness fitness

double f_copy[] INDIVIDUAL p[]

48

0

5

10

15

20

25

30

1 2 3 4

Original
Optimized

#Cores

The same application optimized

7.3x

•  ParaTools ThreadSpotter advice: Change one data
structure

Performance

49

Alignment Problem

struct DATA
{
 char a;
 int b;
 char c;
};

DATA * pMyData;
pMyData = new DATA[36*1024*1024];

for (long i=0; i<36*1024*1024; i++)
{
 pMyData[i].a++;
}

50

Alignment Problem
Explanation

51

Inefficient
Alignment

Fixed

Alignment Problem - Fixed

struct DATA
{

 int b;
 char a;

 char c;
};

DATA * pMyData;
pMyData = new DATA[36*1024*1024];

for (long i=0; i<36*1024*1024; i++)
{
 pMyData[i].a++;
}

52

Inefficient Loop Nesting

#define SIZE (36000*32*32)
#define ROWSIZE 16
#define NBROWS (SIZE/ROWSIZE)

char * p;
p = new char[SIZE];

long nbRows = NBROWS;
long sRowSize = ROWSIZE;

for (long x=0; x<sRowSize; x++)
for (long y=0; y<nbRows; y++)
{
 p[x+y*sRowSize]++;
}

53

Inefficient Loop Nesting
Explanation

54

Inefficient Loop Nesting - Fixed

#define SIZE (36000*32*32)
#define ROWSIZE 16
#define NBROWS (SIZE/ROWSIZE)

char * p;
p = new char[SIZE];

long nbRows = NBROWS;
long sRowSize = ROWSIZE;

for (long y=0; y<nbRows; y++)
for (long x=0; x<sRowSize; x++)
{
 p[x+y*sRowSize]++;
}

55

False Sharing

int sum1;
int sum2;

void thread1(int v[], int v_count) {
sum1 = 0;
for (int i = 0; i < v_count; i++)
sum1 += v[i];
}

void thread2(int v[], int v_count) {
sum2 = 0;
for (int i = 0; i < v_count; i++)
sum2 += v[i];
}

56

False Sharing (Fixed)

int __attribute__((aligned(64))) sum1;
int __attribute__((aligned(64))) sum2;

void thread1(int v[], int v_count) {
sum1 = 0;
for (int i = 0; i < v_count; i++)
 sum1 += v[i];
}

void thread2(int v[], int v_count) {
sum2 = 0;
for (int i = 0; i < v_count; i++)
 sum2 += v[i];
}

57

Questions ?

