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Memory Technologies 
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SRAM vs. DRAM 

SRAM Cell DRAM Cell 

~140 F²  ~ 6 – 10 F²  

Access Time: < 0.1 ns Access Time: < 7 ns 
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SRAM vs. DRAM 

SRAM 

DRAM 

Square footage 
comparison for same 
size of memory 

DRAM 

SRAM 
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SRAM Technology for Main Memory? 

30 cm average 
distance ~ 1 ns 
delay 
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30 cm 
~1 ns 



Use of SRAMs 

CPU SRAM 

DRAM 

BUS 



Bandwidth Limitations 
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Von-Neumann-Bottleneck 

CPU Memory I/O 

Control Bus 

Address Bus 

Data Bus 
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Bandwidth Front Side Bus (FSB) 

CPU	

Front	Side	Bus	

North-	
bridge	

South-	
bridge	

Main	
Memory	PCIe	

PCI	 Graphics	
Controller	

BIOS	 I/O	
Controller	

Example:	
Bus	Width:	64	bit	(8	byte)	
FSB	Clock:	400	MHz	
4	transfers/cycle	
Bandwidth:	8	byte	x	400	MHz	x	4	transfers/cycle	
	
=	12800	MB/s	
	
12800	MB/s	/	8	cores	=	1600	MB/s	
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Caching 

CPU SRAM (Cache) 

DRAM 

BUS 

AT Control Flags Data (64 Byte) 

Cache-Line 



Cache Organization 
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Direct Mapped Cache (DM) 

1	

3	

Cache	256	byte	
(4	Cache-Lines	64	byte)	

Main	Memory	512	byte	

0

1

2

3

4

5

6

7

0	-	63	

64	-	127	

128	-	191	

192	-	255	

256	-	319	

320	-	383	

384	-	447	

448	-	511	
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0	Slot 00 

Slot 01 

Slot 10 

Slot 11 

0 
Tag Slot Offset 

5 6 7 8 

000000000 

001000000 

010000000 

011000000 

100000000 

101000000 

110000000 

111000000 



Analogy Direct Mapped Cache (DM) 



Fully Associative Cache (FA) 

2	

5	

6	

Cache	192	byte	
(3	Cache-Lines	64	byte)	

Main	Memory	512	byte	

0

1

2

3

4

5

6

7

0	-	63	

64	-	127	

128	-	191	

192	-	255	

256	-	319	

320	-	383	

384	-	447	

448	-	511	
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Analogy Fully Associative Cache (FA) 



Set Associative Cache (SA) 

2	

Main	Memory	512	byte	

0

0

1

1

2

2

3

3

Set	1	

Set	0	

even	

odd	

Cache	384	byte	
(6	Cache-Lines	64	byte)	

0	

1	

2	

odd	

even	
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odd	

odd	

odd	

even	

even	

even	



Analogy Set Associative Cache (SA) 



Cache implementation 

L2 $ 
256kB 

Generic Cache: 

Addr  [63..0] 
MSB                               LSB 

AT S Data = 64B 

= 

D$ 
64kB 

L3 €  24MB 

Cacheline, here 64B:  

... 

= = = = = = = 

mux 
Hit 

Sel way ”6” 

Data = 64B 

index 

SRAM: 
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Access Time vs. Size 

L1$ 

L2$ 

L3$ 

Main Memory 

HDD/SSD 

Network/Fileserver 

A
cc

es
s 

Ti
m

e 
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Cache Level Latency 

L1$ L2$ L3$ 
Main Memory 
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32kB 256kB 6MB 8 GB 4 cycles 
11 cycles 39 cycles 

107 cycles 



How is the silicon used (i7-Ex)? 
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How is the silicon used (i7-Ex)? 
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Prefetching/Replacement 
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HW Prefetching  

The prefetcher anticipates application’s next memory access and 
prefetches the data to the cache 

 
Sequential prefetching: Sequential streams [to a page]. Some number of 

prefetch streams supported. Often only for L2 and L3.  
 

PC-based prefetching: Detects strides from the same PC. Often also for 
L1.  
 

Adjacent prefetching: On a miss, also bring in the “next” cache line. 
Often only for L2 and L3.  

25 



SW Prefetching 

/* Unoptimized */ 
for (j = 0; j < N; j++) 
 for (i = 0; i < N; i++) 
  x[j][i] = 2 * x[j][i]; 

 
/* Optimized */ 
for (j = 0; j < N; j++) 
 for (i = 0; i < N; i++) 
  PREFETCH x[j+1][i] 
  x[j][i] = 2 * x[j][i]; 

 
 

(Typically, the HW prefetcher will successfully 
prefetch sequential streams) 
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Replacement Policies 

• LRU (Least Recently Used):  
Evicts the cache line that was least recently used 
 

• Random replacement:  
A random cache line is selected for eviction 
 
• FIFO (First In First Out): 
The oldest entry will be removed 
 
• LFU (Least Frequently Used):  
The least requested cache line will be evicted 
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Analogy Office 

Replace 
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Access Time > 2 min 
Archive 



More Complexity by 
Coherence 
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Programming Model: 

Shared Memory 

Thread Thread Thread Thread Thread Thread Thread Thread 
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Adding Caches: More Concurrency 

Shared Memory 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
    pc 

$ 

Thread 
pc 

$ 

Thread 
    pcà 

$ 
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Caches: 
Automatic Replication of Data 

Shared Memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
Read A 

A: 

... 
Read A 
… 
 

B: 

Read B 
… 
Read A 
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The Cache Coherent Memory System 

Shared Memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 

INV INV 
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The Cache Coherent $2$ 

Shared Memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
Read A 
 

A: 

... 
Read A 
… 
Write A 
 

B: 

Read B 
… 
Read A 
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Writeback 

Shared Memory 

Thread 

$ 

Thread 

$ 

Thread 

$ 

Read A 
Read A 
… 
… 
Read A 
 

A: 

... 
Read A 
… 
Write A ... 
A gets 
replaced 
 

B: 

Read B 
… 
Read A 
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Cache Line States in the MESI 
Protocol 
 

M – Modified: 
The data in the cache line is modified and is guaranteed to only reside 
in this cache. The copy in main memory is not up to date, so when the 
cache line leaves the modified state the data must be written back to 
main memory. 
 
E – Exclusive: 
The data in the cache line is unmodified, but is guaranteed to only 
reside in this cache. 
 
S – Shared: 
The data in the cache line is unmodified, and there may also be 
copies of it in other caches. 
 
I – Invalid: 
The cache line does not contain valid data. 
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Performance Optimization 
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Optimizing for Cache Performance 

Keep the active footprint small 
 
Try to let the processor fetch as much data as possible from cache 

and not from main memory (assist the prefetcher, don’t confuse 
it!) 
 

Try to ensure that every fetched cache line will consist of 100% data 
which actually will  be used 
 

Let the thread do the job which has the required data already stored 
in its private cache 

... 
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What is the potential gain of 
 optimizing cache usage? 

Latency difference L1$ and mem: ~25-50x 
 

Bandwidth difference L1$ and mem: ~20x 
 

Repeated TLB misses adds a factor ~2-3x 
 

Execute from L1$ instead from mem 
        ==> 50-150x improvement 
 

At least a factor 2-4x is within reach  
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Cache Lingo 

Miss ratio: What is the likelihood that a memory access will miss in a cache? 
Fetch ratio: What is the likelihood that a memory access will cause a fetch 

from main memory [including HW prefetching]  
 
Fetch utilization*): What fraction of a cacheline was used before it got evicted 
Writeback utilization*): What fraction of a cacheline written back to memory 

contains dirty data 
Communication utilization*): What fraction of a communicated cacheline is 

ever used? 
   
*) This is “ParaTools ThreadSpotter-ish” language 
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Examples 
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Partially Used Structure 

struct DATA  
{ 
    int a; 
    int b; 
    int c; 
    int d; 
}; 
 
DATA * pMyData; 
pMyData = new DATA[10*1024*1024]; 
 
for (long i=0; i<10*1024*1024; i++) 
{ 
    pMyData[i].a = pMyData[i].b; 
} 

43 



Partially Used Structure 
Explanation 
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Partially 
Used 
Structure 

Fully 
Used 
Structure 



Partially Used Structure - Fixed 

struct DATA  
{ 
    int a; 
    int b; 
}; 
 
 
 
DATA * pMyData; 
pMyData = new DATA[10*1024*1024]; 
 
for (long i=0; i<10*1024*1024; i++) 
{ 
    pMyData[i].a = pMyData[i].b; 
} 
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Example: A scalable parallel application? 

0

1

2

3

4

1 2 3 4
# Cores

App:	Cigar	–	geneUc	algorithm	

Looks like a perfect scalable application! 
Are we done? 

Performance 
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Cigar: The worst slow spot 

for (current = 0; 

     current < howmany-1; 

     current++) 

{  

  max = current;  

  /* Find Next best */  

  for (i = current+1; 

       i < size; i++) 

    if((p+rank[i])->fitness>  

     (p+rank[max])->fitness) 

        max = i; 

 

  SwapInt(&rank[current], 

          &rank[max]);  

} 

fitness fitness fitness fitness fitness fitness fitness fitness 

INDIVIDUAL p[] 
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Cigar: Code change. Duplicate 
data 

for (current = 0; 

     current < howmany-1; 

     current++) 

{  

  max = current;  

  /* Find Next best */  

  for (i = current+1; 

       i < size; i++) 

    if (f_copy[rank[i]] >  

        f_copy[rank[max]]) 

        max = i; 

 

  SwapInt(&rank[current], 

          &rank[max]);  

} 

new_fitness new_fitness new_fitness new_fitness new_fitness new_fitness new_fitness copy of fitness 

fitness fitness fitness fitness fitness fitness fitness fitness 

double f_copy[] INDIVIDUAL p[] 
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0 

5 

10 

15 

20 

25 

30 

1 2 3 4 

Original 
Optimized 

#Cores 

The same application optimized 

7.3x 

•  ParaTools ThreadSpotter advice: Change one data 
structure  

Performance 
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Alignment Problem 

struct DATA  
{ 
    char a; 
    int b;  
    char c; 
}; 
 
DATA * pMyData; 
pMyData = new DATA[36*1024*1024]; 
 
for (long i=0; i<36*1024*1024; i++) 
{ 
    pMyData[i].a++; 
} 
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Alignment Problem 
Explanation 
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Inefficient 
Alignment 

Fixed 



Alignment Problem - Fixed 

struct DATA  
{ 

 int b; 
       char a;   

 char c; 
}; 
 
DATA * pMyData; 
pMyData = new DATA[36*1024*1024]; 
 
for (long i=0; i<36*1024*1024; i++) 
{ 
    pMyData[i].a++; 
} 
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Inefficient Loop Nesting 

#define SIZE (36000*32*32) 
#define ROWSIZE 16  
#define NBROWS (SIZE/ROWSIZE) 
 
char * p; 
p = new char[SIZE]; 
 
long nbRows = NBROWS; 
long sRowSize = ROWSIZE; 
 
for (long x=0; x<sRowSize; x++) 
for (long y=0; y<nbRows; y++) 
{ 
    p[x+y*sRowSize]++; 
} 
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Inefficient Loop Nesting 
Explanation 
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Inefficient Loop Nesting - Fixed 

#define SIZE (36000*32*32) 
#define ROWSIZE 16  
#define NBROWS (SIZE/ROWSIZE) 
 
char * p; 
p = new char[SIZE]; 
 
long nbRows = NBROWS; 
long sRowSize = ROWSIZE; 
 
for (long y=0; y<nbRows; y++) 
for (long x=0; x<sRowSize; x++) 
{ 
    p[x+y*sRowSize]++; 
} 
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False Sharing 

int sum1; 
int sum2; 
 
void thread1(int v[], int v_count) { 
sum1 = 0; 
for (int i = 0; i < v_count; i++) 
sum1 += v[i]; 
} 
 
void thread2(int v[], int v_count) { 
sum2 = 0; 
for (int i = 0; i < v_count; i++) 
sum2 += v[i]; 
} 
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False Sharing (Fixed) 

int __attribute__((aligned(64))) sum1; 
int __attribute__((aligned(64))) sum2; 
 
void thread1(int v[], int v_count) { 
sum1 = 0; 
for (int i = 0; i < v_count; i++) 
  sum1 += v[i]; 
} 
 
void thread2(int v[], int v_count) { 
sum2 = 0; 
for (int i = 0; i < v_count; i++) 
  sum2 += v[i]; 
} 

 

57 



Questions ? 




