
	
	

Improving	Support	for	OpenSHMEM	in	TAU	
Milestone	1	and	Milestone	2	

	

Subcontract	Number:	 4000146681	

Contractor:		 ParaTools,	Inc.	
2836	Kincaid	St.		
Eugene,	OR	97405		
(541)	913-8797		
info@paratools.com	
	

	 	



Overview 
This	report	documents	the	completion	of	Milestone	1	and	Milestone	2	for	Oak	Ridge	National	
Laboratory	(ORNL).	Completion	of	these	milestones	requires	compliance	with	the	following,	

“Milestone	1:	TAU	with	support	for	tracking	callsites”	

and	

“Milestone	2:	TAU	with	support	for	writing	a	merged	XML	profile	files	for	OpenSHMEM.”	

The	software	was	delivered	to	the	Company	on	10	March	2017	and	can	be	downloaded	from	
http://tau.uoregon.edu/tau.tgz.	

Introduction 
Users	of	the	OpenSHMEM	library	need	simple,	yet	powerful	performance	evaluation	tools	that	
capture	high-utility	information	and	present	it	in	meaningful	ways,	such	as	how	much	time	is	
spent	in	OpenSHMEM	routines,	when	and	where	these	routines	are	called	in	the	source	code,	
and	on	which	processing	elements	(PEs).	They	need	tools	that	minimize	manual	steps	needed	
to	generated	performance	data	(e.g.,	work	with	unmodified	binaries	to	reduce	source	
instrumentation)	and	perform	automatic	analysis	of	key	metrics	(e.g.,	the	extent	and	volume	of	
communication).	To	address	these	concerns,	we	have	extended	the	TAU	Performance	System®	
to	better	support	performance	evaluation	of	OpenSHMEM	applications	and	to	simplify	the	
usage	of	TAU	for	OpenSHMEM	applications.	

OpenSHMEM Callsite Support 
We	have	implemented	support	for	tracking	OpenSHMEM	callsites	in	TAU.	This	allows	a	user	to	
observe	how	much	time	is	being	spent	in	OpenSHMEM	calls	and	where	the	call	was	invoked	in	
the	source	code.	TAU	utilizes	debugging	information	(i.e.	executables	must	be	compiled	with	-g)	
to	resolve	callsite	addresses	to	source	code	file	names	and	line	numbers.		Binutils	2.27	or	later	
and	libunwind	1.1	or	later	are	required.		TAU	will	download	and	install	both	requirements	if	the	
flags	“-bfd=download	-unwind=download”	are	passed	to	the	TAU	configuration	script.	

We	tested	callsite	support	with	various	SHMEM	implementations	on	multiple	computing	
systems	available	to	ParaTools	including	Linux	workstations	and	clusters,	Cray	XC30	and	XC40	
systems,	Titan	(ORNL),	and	Godzilla	(University	of	Oregon).		SHMEM	implementations	included	
OpenSHMEM	Reference	1.3,	Sandia	OpenSHMEM	1.3.1,	and	Cray	SHMEM.		We	tested	with	the	
ISx	integer	sort	application	(https://github.com/ParRes/ISx),	NAS	Parallel	Benchmarks,	and	
small	matrix	multiplication	kernels.	



	
Figure	1:	Callsite	profile	of	ISx	executing	on	Godzilla	with	OpenSHMEM	Reference	1.3.	

	
Figure	2:	Callsite	profile	of	ISx	executing	on	Godzilla	with	Sandia	OpenSHMEM	1.3.1.	

Figures	1	and	2	show	callsite	profiles	of	ISx	executing	on	Godzilla	with	OpenSHMEM	1.3	
reference	implementation	and	Sandia	OpenSHMEM	1.3.1.		The	callsite	events	are	indicated	by	
the	“[CALLSITE]”	tag	and	show	the	name	of	the	SHMEM	function,	the	name	of	the	function	
which	invoked	that	SHMEM	function,	and	the	source	location	where	the	SHMEM	function	was	
invoked.		For	example,	Figure	2	shows	that	shmem_init	was	invoked	by	the	“main”	function	at	
line	79	of	isx.c.			



	
Figure	3:	Callsites	in	a	trace	of	ISx	executing	on	Godzilla	with	Sandia	OpenSHMEM	1.3.1.	

Callsites	are	also	supported	in	TAU’s	trace	format.		Figure	3	shows	a	trace	of	ISx	executing	on	
Godzilla	with	Sandia	OpenSHMEM	1.3.1.		The	callsites	of	shmem_int_put	and	
shmem_longlong_fadd	are	visible	as	enclosing	boxes	around	the	SHMEM	function.		Messages	in	
flight	are	shown	as	arrows	between	processes.		Figure	4	shows	SHMEM	callsites	in	the	trace	
function	legend.	



	
Figure	4:	The	Jumpshot	function	legend	window	showing	callsites	for	SHMEM	functions	in	ISx.	

	

OpenSHMEM Merged Profile Support 
We	have	implemented	support	for	merged	profile	files	in	TAU	for	OpenSHMEM.	The	merged	
profile	coalesces	profile	output	from	each	processing	element	to	generate	a	single	XML	profile	
file	named	“tauprofile.xml”.		This	is	done	when	the	application	exits,	so	events	occurring	after	a	
call	to	shmem_finalize	are	also	included	in	the	XML	profile	file.		The	profile	data	contained	in	
tauprofile.xml	is	exactly	the	same	data	as	in	a	typical	distributed	profile	(profile.N.C.T	format).		
Set	the	TAU_PROFILE_FORMAT	environment	variable	to	“merged”	to	generate	merged	profile	
files	as	shown	in	Figures	5	and	6.	

	



 
Figure	5:	Demonstration	of	merged	profile	support	with	ISx	and	OpenSHMEM	Reference	1.3	on	Godzilla.	

	
Figure	6:	Demonstration	of	merged	profile	support	with	ISx	and	Sandia	OpenSHMEM	1.3.1	on	Godzilla.	



Summary 
We	have	implemented	support	for	tracking	OpenSHMEM	callsites	in	TAU,	and	for	generating	
merged	profile	files	in	TAU	for	OpenSHMEM.		We	have	tested	callsite	support	with	various	
SHMEM	implementations	on	multiple	computing	systems	available	to	ParaTools	including	Linux	
workstations	and	clusters,	Cray	XC30	and	XC40	systems,	Titan	(ORNL),	and	Godzilla	(University	
of	Oregon).		SHMEM	implementations	included	OpenSHMEM	1.3,	Sandia	OpenSHMEM	1.3.1,	
and	Cray	SHMEM.		We	tested	with	the	ISx	integer	sort	application,	NAS	Parallel	Benchmarks,	
and	small	matrix	multiplication	kernels.		Our	next	deliverable	“TAU	with	support	for	generating	
OTF2	traces	for	OpenSHMEM”	is	on	track	and	will	be	delivered	as	scheduled	on	13	October	
2017.	


