
Getting Started MPC

Multi-Processor Communications Library

Version 2.1

Patrick Carribault Marc Pérache Sylvain Didelot

December 10, 2010

Contents

1 Introduction 2

2 Installation 2
2.1 Prerequisites . 2
2.2 Standard Installation . 2
2.3 Custom Installation . 4

3 MPC Supported APIs 4

3.1 Message Passing . 4
3.1.1 API . 4
3.1.2 Warning to Users . 4
3.1.3 Removing Global Variables . 4

3.2 OpenMP . 4
3.2.1 API . 4
3.2.2 Compiling and Running OpenMP Programs 5
3.2.3 Threadprivate Variables . 5

3.3 Threads . 5
3.3.1 API . 5
3.3.2 Thread types . 5
3.3.3 Warning to Users . 5

4 Running MPC 5

4.1 Mono-process job . 6
4.2 Multi-process job on a single node . 6
4.3 Multi-process job on multiple nodes . 7

4.3.1 Launch with ssh . 7

5 FAQ 7

6 Contacts 8

1

1 Introduction

This Getting Started guide details the various ways to install and configure the MPC library
(Multi-Processor Communications) version 2.1 rc2 includingMPI 1.3, OpenMP 2.5 (with patched
GCC) and PThread support. Section 2 describes the steps to install and setup the library. Sec-
tion 3 enumerates the parallel-programming models supported in MPC. A Frequently Asked
Questions (FAQ) section is also provided at this end of this guide (see section 5).
For further information on MPC internals, the reader may refer to the articles [3, 2, 1] con-

taining more details about the MPC framework and its execution model.

2 Installation

This section takes you through a sequence of steps to get MPC up and running.

2.1 Prerequisites

The following prerequisites are required to compile MPC:

• The main archive file MPC 2.1 rc2.tar.gz

• A C compiler (e.g., gcc)

• A GNU C compiler

• An optional Fortran compiler if Fortran applications are to be used (e.g., g77 or gfortran)

Some additionnal extra libraries are required to compile the patched GCC and GDB. See
their corresponding website and installation guide to get a list of prerequisites.

2.2 Standard Installation

These steps describe the default installation of MPC with its additionnal components (GCC
and GDB).

1. Unpack the main archive (tar format) and go to the top-level directory:

tar xfz MPC_2.1_rc2.tar.gz
cd MPC_2.1_rc2

If your tar program does not accept the ’z’ option, use the following commands

gunzip MPC_2.1_rc2.tar.gz
tar xf MPC_2.1_rc2.tar
cd MPC_2.1_rc2

2. Choose an installation directory (the default is /usr/local/):

mkdir /home/you/mpc-install

The most convenient choice is a directory shared among all the machines you want to
use the library on. If such a directory is not accessible, you will have to deploy MPC on
every machine after the installation.

2

3. Configure MPC, specifying the installation directory:

./configure --prefix=/home/you/mpc-install

4. Build MPC:

make

5. Install the MPC commands and library:

make install

6. Source the mpcvars script (located inside the bin/ directory of the MPC installation) to
update environment variables (e.g., PATH and LD LIBRARY PATH).

For csh and tcsh:

source /home/you/mpc-install/bin/mpcvars.csh

For bash and sh:

. /home/you/mpc-install/bin/mpcvars.sh

Check that everything went well at this point by running

which mpcrun
which mpc_cc

7. To compile your first MPC program, you may execute the mpc cc compiler:

mpc_cc MPC_Tests/parallel/MPC_Message_Passing/hello_world.c \
-o hello_world

This command uses the main default patched GCC to compile the code. If you want
to use your favorite compiler instead (loosing some features like OpenMP support and
global-variable removal), you may use the mpc cflags and mpc ldflags commands:

$CC MPC_Tests/parallel/MPC_Message_Passing/hello_world.c \
-o hello_world ‘mpc_cflags‘ ‘mpc_ldflags‘

8. To execute your MPC program, use the mpcrun command:

mpcrun -m=ethread -n=4 hello_world
mpcrun -m=ethread_mxn -n=4 hello_world
mpcrun -m=pthread -n=4 hello_world

See the section Thread types for details on the ’-m’ option.

3

2.3 Custom Installation

The previous section described the default installation and configuration of MPC. But other
alternatives are available. You can find out more details on the configuration by running:

./configure --help

The following options are related to additional libraries required to compile the MPC dis-
tribution:

• --with-cpath=DIR1:DIR2:...
Add directories to the CPATH environment variable for the whole MPC distribution.

• --with-library-path=DIR1:DIR2:...
Add directories to the LD LIBRARY PATH environment variable for the whole MPC
distribution

For more information about options to MPC, run the configure script located in the mpc
directory.

3 MPC Supported APIs

3.1 Message Passing

3.1.1 API

MPC is fully MPI-1.3 compliant and supports the MPI THREAD MULTIPLE level from standard
2. See the documentMPI: A Message-Passing Interface Standard version 1.3 (May 2008) for more
details.

3.1.2 Warning to Users

Remove global variables! In MPC, every MPI task is a thread and thus all tasks share global
variables with each other.

3.1.3 Removing Global Variables

We propose several solutions to ease the removal of global variables:

1. Use the option -Wmpc with the patched GCC compiler to generate warnings. In this
mode, the compiler will warn you about every global variable declared in the program.

2. Use the option -fmpc-privatize to automatically privatize the global variables. In
this mode, every global variable is duplicated for every MPI task such as the code can
run correctly with MPC. Note the application has to be compiled as a dynamic library
for this solution to work.

3.2 OpenMP

3.2.1 API

MPC is fully OpenMP-2.5 compliant. See the document OpenMP Application Program Interface
version 2.5 (May 2005) for more details.

4

3.2.2 Compiling and Running OpenMP Programs

To compile applications with OpenMP directives (C, C++ or Fortran), you have to use the de-
fault compiler comingwith theMPCDistribution (see Section 2 for explanation to install MPC).
This compiler is a patched version of GCC generating code for the MPC library when trans-
forming OpenMP directives. Thus, to activate the OpenMP transformation, use the -fopenmp
option with the compiler drivers mpc cc (C), mpc cxx (C++) or mpc f77 (Fortran).

3.2.3 Threadprivate Variables

The OpenMP standard proposes a directive to create thread-private variables. The MPC im-
plementation follows the standard and supports this feature. Nevertheless, for this feature to
work, the application has to be compiled as a dynamic library.

3.3 Threads

3.3.1 API

MPC provides a POSIX Thread 2003 compatible API.

3.3.2 Thread types

Themain command mpcrun accepts the ’-m’ option to choose between several kind of threads.
Here is a list of the current available thread types:

1. Ethread: Mx1 user level thread model.

2. Ethread mxn: MxN user level thread model.

3. Pthread: underlying POSIX Thread library.

The article [3] contains more details on the multiple thread types and their characteristics.

3.3.3 Warning to Users

It is dangerous to mix MPC POSIX Threads and system POSIX Threads! This mix may lead
to an undefined behavior.

4 Running MPC

The mpcrun script drives the launch of MPC programs with different types of parallelism. Its
usage is defined as follows:

Usage mpcrun [option] [--] binary [user args]

Informations:
--help,-h Display this help
--show, Display command line
--version-details, Print version of each module used
--report, Print report
--tmp_dir=dir, Directory to store mpc files
--verbose,-v Verbose mode

5

Topology:
--task-nb=n,-n=n Total number of tasks
--process-nb=n,-p=n Total number of processes
--cpu-nb=n,-c=n Number of cpus per process
--node-nb=n,-N=n Total number of nodes
--disable-smt Disable SMT capabilities
--share-node Restrict CPU number to share node

Multithreading:
--multithreading=n,-m=n Define multithreading mode

modes: pthread ethread_mxn ethread

Network:
--network=n,-net=n Define Network mode

modes: none tcp ...
modes (experimental): ...

Checkpoint/Restart and Migration:
--checkpoint Enable checkpoint
--migration Enable migration
--restart Enable restart

Launcher:
--launcher=n,-l=n Define launcher
--opt=<options> launcher specific options
--launch_list print available launch methods

Debugger:
--dbg=<debugger_name> to use a debugger

4.1 Mono-process job

In order to run an MPC job in a single process, you should use on of the following methods
(depending on the thread type you want to use).

mpcrun -m=ethread -n=4 hello_world
mpcrun -m=ethread_mxn -n=4 hello_world
mpcrun -m=pthread -n=4 hello_world

4.2 Multi-process job on a single node

In order to run an MPC job in a 2-process single-node manner with the SHared Memory mod-
ule enabled (SHM), you should use one of the following methods (depending on the thread
type you want to use). Note that on a single node, even if the TCP module is explicitly used,
MPC automatically uses the SHMmodule for all process communications.

mpcrun -m=ethread -n=4 -p=2 -net=tcp hello_world
mpcrun -m=ethread_mxn -n=4 -p=2 -net=tcp hello_world

6

mpcrun -m=pthread -n=4 -p=2 -net=tcp hello_world

Of course, thismode supports bothMPI andOpenMP standards, enabling the use of hybrid
programming.
There are different implementations of inter-process communications. A call to mpcrun

--help details all the available implementations.

4.3 Multi-process job on multiple nodes

In order to run an MPC job on 2 node with 8 processes communicating with TCP, you should
use one of the following methods (depending on the thread type you want to use). Note that
on multiple nodes, MPC automatically switches to the MPC SHared Memory module (SHM)
when a communication between processes on the same node occurs. This behavior is available
with all inter-process communication modules (TCP included).

mpcrun -m=ethread -n=8 -p=8 -net=tcp -N=2 -l=ssh hello_world
mpcrun -m=ethread_mxn -n=8 -p=8 -net=tcp -N=2 -l=ssh hello_world
mpcrun -m=pthread -n=8 -p=8 -net=tcp -N=2 -l=ssh hello_world

Of course, thismode supports bothMPI andOpenMP standards, enabling the use of hybrid
programming.
There are different implementations of inter-process communications and launch methods.

A call to mpcrun --help detail all the available implementations and launch methods.

4.3.1 Launch with ssh

In order to execute anMPC job onmultile nodes using ssh, you need to fill the $HOME/.mpcrun tcp host
file with the list of nodes to use.

5 FAQ

Q - How can I execute Fortan program on MPC ?

A - First, be sure that you don’t have disabled the fortran support (--disable-fortran of
theMPC configure). Second, rename yourmain fortran function by subroutine mpc user main.
For example, change<<program main program>>by<<subroutine mpc user main>>

Now, you can execute your fortran program using the mpcrun command.

Q - How can I disable the MPC SHared Memory module (SHM) ?

A - The SHMmodule is enabled by default. To disable it, pass the argument --disable-shm
to the MPC configure. Don’t forget to recompile MPC.

Q - MPC configure gives me a ”FATAL ERROR” message. What can I do ?

####################### FATAL ERROR #######################
MPC *WILL* overwrite the following include file(s):
include/mpi.h
include/pthread.h
include/semaphore.h

7

include/omp.h

Please set your --prefix correctly and run configure again.
If you know what you are doing, you can use the configure
flag --disable-prefix-check. Keep in mind that your headers
will be *DEFINITIVELY* overwritten.
Configure exiting with no Makefile generated....
###

A - You must be careful with this error message. MPC detected that the prefix path you have
given already includes header files. I.e: mpi.h, pthread.h, semaphore.h and omp.h. If you
continue the MPC installation using this prefix path, these files will be *DEFINITIVELY* over-
written. As a conclusion, either you change the prefix path (recommanded version), or you
pass the argument --disable-prefix-check to MPC configure, but your headers *WILL*
be overwritten.

Q - How can I tune theMPC SHaredMemorymodule (SHM) according to my needs
?

A - You need to edit the file located there :
mpc/MPC Message Passing/sctk low level comm/sctk shm consts.h. In this file, you
can modify the number of cells in each queue (PTP queues, collective queues, etc. . .) as well
as the size allocated by each cell. Don’t forget to recompile MPC after it.

6 Contacts

• CARRIBAULT Patrick patrick.carribault@cea.fr

• PÉRACHE Marc marc.perache@cea.fr

• DIDELOT Sylvain sdidelot@exascale-computing.eu

References

[1] Patrick Carribault, Marc Pérache, and Hervé Jourdren. Enabling loz-overhead hybrid
MPI/OpenMP parallelism with MPC. In To appear in International Workshop on OpenMP
(IWOMP’10), Tsukuba, Japan, June 2010.

[2] Marc Pérache, Patrick Carribault, andHervé Jourdren. MPC-MPI: AnMPI Implementation
Reducing the Overall Memory Consumption. In 16th European PVM/MPI Users’ Group
Meeting (EuroPVM/MPI 2009), Finland, September 2009.

[3] Marc Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A unified parallel runtime
for clusters of NUMA machines. In Proceedings of the 14th International Euro-Par Conference
(Euro-Par 2008), Las Palmas de Gran Canaria, Spain, August 2008.

8

