Getting Started MPC
Multi-Processor Communications Library
Version 2.1

Patrick Carribault Marc Pérache Sylvain Didelot

December 10, 2010

Contents
1 Introduction

2 Installation
2.1 Prerequisites e
2.2 Standard Installation
2.3 CustomInstallation

3 MPC Supported APIs

31 MessagePassing.
311 APL . ..
312 WarningtoUsers
3.1.3 Removing Global Variables
32 OpenMP e
321 APL e
3.2.2 Compiling and Running OpenMP Programs
3.2.3 Threadprivate Variables 0 0L
33 Threads
331 APL e
332 Threadtypes
333 WarningtoUsers
4 Running MPC
41 Mono-processjob
42 Multi-processjobonasinglenode 0.,
4.3 Multi-process job on multiplenodes o o 0oL
431 Launchwithssh
5 FAQ
6 Contacts

1 Introduction

This Getting Started guide details the various ways to install and configure the MPC library
(Multi-Processor Communications) version 2.1_rc2 including MPI 1.3, OpenMP 2.5 (with patched
GCC) and PThread support. Section 2 describes the steps to install and setup the library. Sec-
tion 3 enumerates the parallel-programming models supported in MPC. A Frequently Asked
Questions (FAQ) section is also provided at this end of this guide (see section 5).

For further information on MPC internals, the reader may refer to the articles [3, 2, 1] con-
taining more details about the MPC framework and its execution model.

2 Installation

This section takes you through a sequence of steps to get MPC up and running.

2.1 Prerequisites
The following prerequisites are required to compile MPC:
e The main archive file MPC_2.1_rc2.tar.gz
e A C compiler (e.g., gcc)
e A GNU C compiler
¢ An optional Fortran compiler if Fortran applications are to be used (e.g., g77 or gfortran)
Some additionnal extra libraries are required to compile the patched GCC and GDB. See
their corresponding website and installation guide to get a list of prerequisites.
2.2 Standard Installation

These steps describe the default installation of MPC with its additionnal components (GCC
and GDB).

1. Unpack the main archive (t ar format) and go to the top-level directory:

tar xfz MPC 2.1 rc2.tar.gz
cd MPC 2.1 rc2

If your tar program does not accept the "z” option, use the following commands
gunzip MPC 2.1 rc2.tar.gz
tar xf MPC 2.1 rc2.tar
cd MPC 2.1 rc2
2. Choose an installation directory (the defaultis/ usr/1 ocal /):
nkdi r / hone/ you/ nmpc-installl
The most convenient choice is a directory shared among all the machines you want to

use the library on. If such a directory is not accessible, you will have to deploy MPC on
every machine after the installation.

. Configure MPC, specifying the installation directory:
./lconfigure --prefix=/home/you/ npc-inst al
. Build MPC:

make

. Install the MPC commands and library:

make install

. Source the npcvar s script (located inside the bi n/ directory of the MPC installation) to
update environment variables (e.g., PATHand LD_LI BRARY_PATH).

For csh and tcsh:
sour ce / hone/ you/ mpc-install/bin/nmpcvars. csh
For bash and sh:
/ home/ you/ npc-instal |/ bi n/ npcvars. sh
Check that everything went well at this point by running

whi ch npcrun
whi ch npc_cc

. To compile your first MPC program, you may execute the npc_cc compiler:

npc_cc MPC Tests/parallel/MPC Message Passing/hello world.c \
-0 hello_world

This command uses the main default patched GCC to compile the code. If you want
to use your favorite compiler instead (loosing some features like OpenMP support and

global-variable removal), you may use the npc_cf | ags and npc_l df | ags commands:

$CC MPC Test s/ paral | el / MPC_Message_Passi ng/ hel | o_worl d. ¢ \
-0 hello world *nmpc_cflags® ‘npc_|dfl ags’

. To execute your MPC program, use the mpcrun command:

npcrun - nret hr ead -n=4 hello_world
npcrun -mrethread_nmxn -n=4 hello_world
npcrun - mept hr ead -n=4 hello_world

See the section Thread types for details on the -m” option.

2.3 Custom Installation

The previous section described the default installation and configuration of MPC. But other
alternatives are available. You can find out more details on the configuration by running;:

./configure --help

The following options are related to additional libraries required to compile the MPC dis-
tribution:

e --wi th-cpath=DRl: DIR2: . ..
Add directories to the CPATH environment variable for the whole MPC distribution.

e --with-library-path=D Rl: DIR2: ...
Add directories to the LD_LIBRARY_PATH environment variable for the whole MPC
distribution

For more information about options to MPC, run the conf i gur e script located in the npc
directory.

3 MPC Supported APIs

3.1 Message Passing
3.1.1 API

MPC is fully MPI-1.3 compliant and supports the MPI _THREAD_MULTI PLElevel from standard
2. See the document MPI: A Message-Passing Interface Standard version 1.3 (May 2008) for more
details.

3.1.2 Warning to Users

Remove global variables! In MPC, every MPI task is a thread and thus all tasks share global
variables with each other.

3.1.3 Removing Global Variables

We propose several solutions to ease the removal of global variables:

1. Use the option - Wrpc with the patched GCC compiler to generate warnings. In this
mode, the compiler will warn you about every global variable declared in the program.

2. Use the option - f npc- pri vati ze to automatically privatize the global variables. In
this mode, every global variable is duplicated for every MPI task such as the code can
run correctly with MPC. Note the application has to be compiled as a dynamic library
for this solution to work.

3.2 OpenMP
3.21 API

MPC is fully OpenMP-2.5 compliant. See the document OpenMP Application Program Interface
version 2.5 (May 2005) for more details.

3.2.2 Compiling and Running OpenMP Programs

To compile applications with OpenMP directives (C, C++ or Fortran), you have to use the de-
fault compiler coming with the MPC Distribution (see Section 2 for explanation to install MPC).
This compiler is a patched version of GCC generating code for the MPC library when trans-
forming OpenMP directives. Thus, to activate the OpenMP transformation, use the - f opennp
option with the compiler drivers npc_cc (C), mpc_cxx (C++) or npc_f 77 (Fortran).

3.2.3 Threadprivate Variables

The OpenMP standard proposes a directive to create thread-private variables. The MPC im-
plementation follows the standard and supports this feature. Nevertheless, for this feature to
work, the application has to be compiled as a dynamic library.

3.3 Threads

3.3.1 API

MPC provides a POSIX Thread 2003 compatible API.

3.3.2 Thread types

The main command npcr un accepts the "-m’ option to choose between several kind of threads.
Here is a list of the current available thread types:

1. Ethread: Mx1 user level thread model.
2. Ethread_mxn: MxN user level thread model.

3. Pthread: underlying POSIX Thread library.

The article [3] contains more details on the multiple thread types and their characteristics.

3.3.3 Warning to Users

It is dangerous to mix MPC POSIX Threads and system POSIX Threads! This mix may lead
to an undefined behavior.

4 Running MPC

The npcr un script drives the launch of MPC programs with different types of parallelism. Its
usage is defined as follows:

Usage nmpcrun [option] [--] binary [user args]

I nf or mat i ons:
--help,-h Display this help
--show, Display conmand |ine
--version-details, Print version of each nodul e used
--report, Print report
--tnmp_dir=dir, Directory to store npc files
--verbose, -v Verbose node

Topol ogy:
--task-nb=n, -n=n Total nunber of tasks
--process-nb=n, - p=n Total nunber of processes
--cpu- nb=n, -c=n Nunber of cpus per process
--node- nb=n, - N=n Total nunber of nodes
--di sabl e-snmt Disable SMI capabilities
--share-node Restrict CPU nunber to share node

Mul tit hreadi ng:
--mul tithreadi ng=n,-nen Define nultithreadi ng node
nodes: pthread et hread_nxn et hread

Net wor Kk:
--networ k=n, - net =n Defi ne Networ k node
nodes: none tcp ...
nodes (experinental):

Checkpoint/Restart and M grati on:
- -checkpoi nt Enabl e checkpoi nt
--mgration Enable mgration
--restart Enable restart

Launcher:
--launcher=n, -1 =n Define | auncher
--opt =<options> | auncher specific options
--launch_list print avail able | aunch net hods

Debugger :
- - dbg=<debugger _nane> to use a debugger

4.1 Mono-process job

In order to run an MPC job in a single process, you should use on of the following methods
(depending on the thread type you want to use).

npcrun - mret hread -n=4 hello_world
npcrun -mret hread_nxn -n=4 hello_world
npcrun - mept hread -n=4 hello_world

4.2 Multi-process job on a single node

In order to run an MPC job in a 2-process single-node manner with the SHared Memory mod-
ule enabled (SHM), you should use one of the following methods (depending on the thread
type you want to use). Note that on a single node, even if the TCP module is explicitly used,
MPC automatically uses the SHM module for all process communications.

npcrun -mneet hread -n

4 -p=2 -net=tcp hello_world
npcrun -mret hread_nmxn -n=4 -p=2

-net=tcp hello_world

npcrun - mept hr ead -n=4 -p=2 -net=tcp hello_world

Of course, this mode supports both MPI and OpenMP standards, enabling the use of hybrid
programming.

There are different implementations of inter-process communications. A call to npcrun
- - hel p details all the available implementations.

4.3 Multi-process job on multiple nodes

In order to run an MPC job on 2 node with 8 processes communicating with TCP, you should
use one of the following methods (depending on the thread type you want to use). Note that
on multiple nodes, MPC automatically switches to the MPC SHared Memory module (SHM)
when a communication between processes on the same node occurs. This behavior is available
with all inter-process communication modules (TCP included).

npcrun - meet hread -n
npcrun -mret hread_nxn -n
npcrun - nmept hread -n

8 -p=8 -net=tcp -N=2 -1=ssh hello_world
=8 -p=8 -net=tcp -N=2 -1 =ssh hello_world
=8 -p=8 -net=tcp -N=2 -1 =ssh hello _world
Of course, this mode supports both MPI and OpenMP standards, enabling the use of hybrid
programming.
There are different implementations of inter-process communications and launch methods.
A call tonpcrun - - hel p detail all the available implementations and launch methods.

4.3.1 Launch with ssh

In order to execute an MPC job on multile nodes using ssh, you need to fill the $HOME/ . npcr un_t cp_host
file with the list of nodes to use.

5 FAQ

Q - How can I execute Fortan program on MPC ?

A - First, be sure that you don’t have disabled the fortran support (- - di sabl e-f ortran of

the MPC configure). Second, rename your main fortran function by subr out i ne npc_user _nai n.
For example, change <<pr ogr am mai n_pr ogr ant>>by <<subr outi ne npc_user _mai n>>
Now, you can execute your fortran program using the npcr un command.

Q - How can I disable the MPC SHared Memory module (SHM) ?

A - The SHM module is enabled by default. To disable it, pass the argument - - di sabl e- shm
to the MPC configure. Don’t forget to recompile MPC.

Q - MPC configure gives me a "FATAL ERROR” message. What can I do ?

HEHBHH BB R R FATAL ERROR ######H##H#HHH IR HHBHH 7
MPC W LL+* overwite the followi ng include file(s):

i nclude/ npi . h

i ncl ude/ pt hread. h

i ncl ude/ semaphore. h

i ncl ude/ onp. h

Pl ease set your --prefix correctly and run configure again.
If you know what you are doing, you can use the configure
flag --disable-prefix-check. Keep in mnd that your headers
wi |l be =DEFI N TI VELY* overwritten.

Configure exiting with no Makefile generated.. ..

HHHRHHHH BB RHHH R R

A - You must be careful with this error message. MPC detected that the prefix path you have
given already includes header files. I.e: mpi.h, pthread.h, semaphore.h and omp.h. If you
continue the MPC installation using this prefix path, these files will be *DEFINITIVELY* over-
written. As a conclusion, either you change the prefix path (recommanded version), or you
pass the argument - - di sabl e- pr efi x- check to MPC configure, but your headers *WILL*
be overwritten.

Q - How can I tune the MPC SHared Memory module (SHM) according to my needs
?

A - You need to edit the file located there :

npc/ MPC_Message_Passi ng/ sct k] ow.l evel com sct k_.shmconst s. h. In this file, you
can modify the number of cells in each queue (PTP queues, collective queues, etc...) as well
as the size allocated by each cell. Don’t forget to recompile MPC after it.

6 Contacts

o CARRIBAULT Patrick patrick.carribault@cea.fr
e PERACHE Marc marc.perache@cea.fr

e DIDELOT Sylvain sdidelot@exascale-computing.eu

References

[1] Patrick Carribault, Marc Pérache, and Hervé Jourdren. Enabling loz-overhead hybrid
MPI/OpenMP parallelism with MPC. In To appear in International Workshop on OpenMP
(IWOMP’10), Tsukuba, Japan, June 2010.

[2] Marc Pérache, Patrick Carribault, and Hervé Jourdren. MPC-MPI: An MPI Implementation
Reducing the Overall Memory Consumption. In 16th European PVM/MPI Users” Group
Meeting (EuroPVM/MPI 2009), Finland, September 2009.

[3] Marc Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A unified parallel runtime
for clusters of NUMA machines. In Proceedings of the 14th International Euro-Par Conference
(Euro-Par 2008), Las Palmas de Gran Canaria, Spain, August 2008.

